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An exact solution is constructed of some boundary-value problems of the thermoelastic and elastic equilibrium of wedge-shaped 
bodies, bounded by two infinite or finite coordinate planes, that is, by the faces of a dihedral angle, with rotationally-symmetric 
orthogonal coordinates. In the case when the wedge is infinite, a steady temperature field and corresponding surface perturbations 
act on it. If the wedge-shaped body occupies a finite domain, bounded by the coordinate surfaces of one of the rotationally- 
symmetric systems of coordinates, then surface perturbations are specified on its faces (when there is no temperature field) and 
homogeneous conditions of a special form are satisfied on the remaining part of the surface. The surface perturbations on each 
of the two faces correspond to the specification: (a) displacements, (b) tangential displacements and a normal stress and 
(c) shear stresses and a normal displacement. © 2005 Elsevier Ltd. All rights reserved. 

In the analysis of a boundary-value problem of the elastic equilibrium of an infinite wedge [1, 2], a 
solution was constructed in a cylindrical system of coordinates (when there was no temperature perturba- 
tion) using formulae for a double integral transformation and, in particular, using a Kontorovich- 
Lebedev transformation [1] along a radial coordinate and a Fourier transformation along one of the 
other linear coordinates. Either displacements, tangential displacements or shear stresses and a normal 
displacement were specified on the wedge faces. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Using the method of separation of variables and double series, the solutions of static boundary-value 
problems are constructed in the theory of elasticity for a curvilinear coordinate parallelepiped 

= {p0 < p < pl, 0 < o~< al, 130 < [3 < 131} (1.1) 

where p, ~, [3 are rotationally symmetric orthogonal coordinates with Lam6 coefficients hp = h~ = 
h(p, 13), ha = H(p, ~) (cylindrical coordinates, spherical coordinates, prolate spheroidal coordinates, 
oblate spheroidal coordinates, paraboloidal coordinates, toroidal coordinates and bispherical coordin- 
ates belong to fundamental rotationally symmetric systems of coordinates [3]). In the planes c~ = 0 and 

= al, one specifies (a) displacements, (b) tangential displacements and the normal stress and (c) shear 
stresses and the normal displacement. Homogeneous conditions of a special type are specified on the 
lateral surfaces (p = P0, P = Pl, [~ = ~0, ~ = ~1). A way of extending the method of solution to find 
the thermoelastic equilibrium of an infinite wedge will be indicated below. 

The problem of the elastic equilibrium of a wedge is generalized (the generalization consists of the 
possibility of constructing the solution in any of the rotationally symmetric systems of coordinates and 
not only in a circular cylindrical system of coordinates) although the methods for solving it are also simplified 
by: (1) constructing a general solution for the class of boundary-value problem in thermoelasticity being 
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considered and (2) replacing the classical conditions, specified on the boundary surfaces c~ = const, by 
equivalent conditions. 

The following can be said about the effectiveness of the solutions. If, by using the method of separation 
of variables, a solution can be effectively constructed for the principal boundary-value problems for 
Laplace's equation with zero conditions when p = 9j and [3 = [3j, where j = 0, 1, then the elastic 
equilibrium of the bodies being considered here can be found with the same efficiency, in the same 
domain (1.1) and by the same method. 

2. THE E Q U I L I B R I U M  E Q U A T I O N S ,  E Q U A T I O N S  OF STATE 
AND B O U N D A R Y  C O N D I T I O N S  

If the temperature field is independent of time and there are no mass forces, the thermoelastic equili- 
brium of a homogeneous, isotropic body in rotationally symmetric orthogonal systems of coordinates 
can be represented in the form [4] 

A[2(~:- 2)U + R(2divU- (8 - ~c)kT)] = 0 (2.1) 

or in the form 

grad[lcdivU - (8 - K)kT] - (~c- 2)rotrotU = 0, divrotU = 0 

U = ulll+uzlz+u313, R = xl l+ylz+zl  3, 1~ = 4 ( l - v )  
(2.2) 

where U is the displacement vector, and ul,/22 and u3 are its components along the axes of the Cartesian 
system of coordinates x, y and z, v is Poisson's ratio and k is the coefficient of linear thermal expansion. 

The components of the stress tensor can be expressed in terms of the displacements as follows: 

h2R(°)= qlhZdivU+ 2hup+ 2wh~-]]2h2T, hHA(O) H 2 ( V l + h u  ~ -ff --y = 

hHA(a)--g = ]]lhHdivU+2hva+2wH~+2uHo-rl2hHT' hHA(~)'-~ = hwc~+H2(t~l~I [~ 

(u) +(w) 
h2B(13)g = hldivU + 2hw~ + 2uhp- ]]2h2T' ~t = h ~ -h p 

divU (hHu)p+h2ua+(hHw)~" E 4 - ~  = k 8 - ~  
= h2H ' g = 2(1 +v) '  111 = ~c-2' ]]2 K - 2  

Partial derivatives with respect to the corresponding coordinates are denoted by the subscripts P, a, ~, 
R (p), A (~), B (~) are the normal stresses and R (~) = A (p), R (~) = B (p), A (1~) = B (~) are the shear stresses, u, 
t) and w are the components of the displacement vector U along the tangents to the coordinates lines 
P, a, [3, E is the modulus of elasticity and T is the change in temperature in the elastic body, which 
obeys the equation 

T~(~ AT = (HTp)o + (HT~)~ + = 0 
h2 H --~ 

(2.3) 

and the corresponding boundary conditions. In the case of spherical coordinates r, ct, 13, h = r, 
H = rsin [3 and the operation 0/Op is replaced by the operation rO/Or. 

In rotationally symmetric coordinates, the equation 

A[(~: - 2)Hro(~)U + z(~:divU- (8 - ~:)kT)] = 0 (2.4) 

can be obtained from system (2.2), where rot(~)U is the projection of the vector rotU onto the tangent 
to the coordinate line o~. 
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Introducing the notation 

L[P<(hw) - L I ~ l ( h u )  - (4 - l¢ /2)khezT = lch2K 

h-2[L [p(1 -~?l(hu) + L [~(l - ~)l(hw)] + v a - (4 - ~: /2)kHT = (~: - 2)D (2.5) 

LtrSl( f )  = H s + l ( H - s f )  ~ 

and using relations (2.1), (2.2) and (2.4), we obtain the equations 

AK = 0, A(Dcosa-1)s ina)  = 0, A(Dsin0~+ 1)cosc¢) = 0 

LtIN3](T) = -~[szL [I~(~- I)](HT) + (K:- 2)L[P(-~)I(zT) - 2H2TI3] 

L[2pl3I(T) = I~2[KL[P0¢- I)](HT) - (1(- 2)L [1~(~:)I(zT) - 2H2Tp] (2.6) 

( h w ) a a  + K2(hw) = L[N~-1)](1)~ _ ~;D) - KL[P(-~)1( K)  - L(lPl3)(T) 

(hu)e~c ~ + K2(hu) = L[O(~-I)](1) a -  gD) + ~L[[3(-~:)I(K) - L(2OD(T) 

Note that the second and third equations in system (2.6) can be written in the form 

A D - H - 2 D - 2 H - 2 1 ) c ~  O, A1)-H-21)+2H-Du = 0 

In the case of the twisting of solids of revolution, when ~ = v(p, [3), w = 0, u = 0, we have 

A21)- H21) = H-lh-2[(H1)p)p + (H1)f~)~] - H21) = 0 

In the case of an axisymmetric stressed state, when 

l) = 0, T = T(0~,~) (A2T= 0), w = w(p,~),  u = u(p,~) 

the following form of solution 

A2K = 0, A2D-H-2D = 0 

hw = - 1 [L[N~- 1)](D ) + L[p(-~)I(K)] _ 4L[1 PIll(T) 
K 

1 [L[p(~- hu = - ~ 1)](D) - LD(-~)I(K)] - 1--~L[2OI3I(T) 
K 

is obtained from Eqs (2.6). 
It should be noted that problems of the elastic (and not thermoelastic) equilibrium of a curvilinear 

coordinate parallelepiped (CCP) occupying the domain (1.1) will be solved next, although the procedure 
for finding the solution of boundary-value problems in the theory of elasticity for a CCP can be directly 
transferred to finding the thermoelastic equilibrium of an infinite wedge. It can therefore be assumed 
that, if it is possible to substantiate and use the corresponding integral transforms (in the case of 
cylindrical coordinates r, ~, z, these will be a Kontorovich-Lebedev transformation with respect to the 
coordinate r and a Fourier transformation with respect to the coordinate z), then the solutions of 
the corresponding boundary-value problems of thermoelasticity can also be efficiently constructed in 
the case of an infinite wedge. In the case of circular cylindrical coordinates r, a, z, what has been said 
also holds for the domain 

= { O < r < o o ,  O <o~<oq ,  O < z < z l }  
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which is only infinite along the r coordinate,  and then  the symmetry  condit ions Ta = 0, a) = O,A (z) = 0, 
A (r) = 0 or an t i symmetry  condit ions I = 0, A (~) = 0, w = 0, u = 0 are satisfied when  z = zj ( j  = 0, 1) 
(in this case, along the z coord ina te  instead of  a Four ier  t ransformat ion ,  we will have a cor responding  
t r igonomet r ic  Four ier  series). 

T h e  elastic (and not  thermoelas t ic)  equi l ibr ium of  a CCP will next be  considered.  The  boundary  
condit ions in this case have the following fo rm 

when  p = p j: a )  L [p(l-~)l(hu) = 0, o = 0, 

b)  u = 0, L[O(K-1)I(1)) = 0, 

w = 0  or 
(2.7) 

L[PKI(hw) = 0 

when  ~ = ~j: a) L[f~O-~)l(hw) = 0, u = 0, v = 0 or  

b)  w = 0, L[f~'~l(hu) = 0, LII~(~-I)I(v) = 0 
(2.8) 

when  a = a j :  a )  v = f j l (P ,  [3), A (15) = Fj2(O , ~), A (0) = Fj3(O , [3) or  

b) A (~) = Fjl(p,  ~), hw = fj2(P, ~), hu = f j3(P,  6) or  

c)  1) = f j l ( P , ~ ) ,  hw = f j 2 ( P , ~ ) ,  hu = f j 3 (P , I  3) 

(2.9) 

In  fo rmulae  (2 .7)- (2 .9) , j  = 0, 1 and a0 = 0. The  condit ion imposed  on the functions3~l and Fjl (l = 
1, 2, 3) will be  discussed below and we will only men t ion  now that  these functions are such that  
compat ibi l i ty  condit ions are satisfied on the edges of  the CCR 

Note  that  the smaller  the curvature  of  the boundary  surface P = 9j, the lesser the extent  to which 
condit ions (2.7) for  cases a and b respectively differ f rom the condit ions 

when  9 = Pj: a )  R (p) = 0, 1) = 0, w = 0 and 

b)  u = 0, A [p] = 0, R [13l = 0 
(2.10) 

Condi t ions  (2.7)a and (2.7)b are equivalent  to the corresponding condit ions (2.10) when  9 = Pj is a 
plane.  Wha t  has been  said above also holds for  the surface 13 = [3j and condit ions (2.8). 

3. T H E  G E N E R A L  S O L U T I O N  A N D  T R A N S F O R M A T I O N  
O F  T H E  B O U N D A R Y  C O N D I T I O N S  

From the first three  equat ions  of  system (2.6), it follows that  

K = cpl, D = ¢P2coso~+cP3sin~, 19 = ~P3cos~-~o2sinot (3.1) 

where  q)l, tO2 and % are ha rmonic  functions, and w and u are expressed in te rms of  q)l, q)2 and % by 
integrat ing the last two equat ions  of  (2.6). 

Using the me thod  of  separat ion of  variables and taking account  of  conditions (2.7)-(2.9), we represent  
the  ha rmonic  functions 91, q02 and % in the following fo rm (hencefor th ,  summat ion  is carr ied out  f rom 
n = 1 t o n  = ~ and f r o m m  = 1 t o m  = ~ everywhere)  

q)l = 2 ~tmn(OOVlmn(P ' ~) 
n, m 

-Pl ~ pI(IX - 51) 
(~lmn = t i l m n e  + B l m n e  1 = 1, 2, 3, Pt = Pl( m, n), P2 = P3 

(3.2) 

Alm,, and Blm n are constants,  and qJtmn is a non-trivial  solution of  the following Sturm-Liouvi l le  p rob l em 
[5] 

(hPt)2uL 
[H(Ugtmn)p]P + [H(q~lmn)~]~ + T /ran = 0 (3.3) 
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when p : pj: a)trlllm n = 0 or b)LtPKt](kI~lmn) = 0 (3.4) 

when ~ = ~j: a) I'Illm n = 0 or b) L[~r'](U'~lmn) = 0 (3.5) 

Here, lq = -~c, K 2 = 1C 3 = tC -- 1; utt2rnn = tIJ3m n since ~:2 = ~c3. We also note here that, when p = pj, the 
following holds: if qqm, = 0, then L[P(K-1)I(W2mn) = 0, L[P(~-l)](q~3m~) = 0. If, however, L[P(-~)](Wlm~ ) = 0, 
then q'2m~ = ult3rnn = 0. Similar relations hold when 13 = ~3j (when p is replaced by 13). 

It is understood that boundary-value problem (3.3)-(3.5) in considered in cylindrical, spherical 
paraboloidal, toroidal and bispherical coordinates as well as in prolate and oblate spheroidal coordinates. 
In all of these coordinates, subsequent separation of the variables in Eq. (3.3) is possible, which leads 
to well-known (and studied) regular one-dimensional Sturm-Liouville problems. Depending on the 
system of coordinates, the functions q~Zm~(P, 13) are a product: (1) of Bessel functions and trigonometrical 
functions, (2) Legendre functions and trigonometrical functions, (3) Bessel functions and Bessel 
functions, (4) Legendre functions and Legendre functions (more precisely, we mean by Bessel functions 
and Legendre functions linear combinations of Bessel functions and linear combinations of Legendre 
functions, respectively) [6]. In particular, if a CCP is treated in a cylindrical system of coordinates r, ~, 
z and conditions (2.7) and (2.8) are satisfied on the lateral surfaces of the CCP in case a, then 

V2rn n ~t3m n [llff)(rm)Xi~(rom) (1¢) = = -Ki~(rm)l i~ (r0,n)]sinzm = Ro(r)s inz  m 

(R) [r(-~)] K r Vtllmn = { I i h  (rm)[L ( ih( rn))lr=ro-- 

[r(-~¢)] (R) 
-K i~( rm)[L  (li~ (rm))]r=ro}COSZm = R l ( r ) c o s z  m 

Here 

~ m  rtm rcm 
r m = - - r ,  rom = _----r o, z m = - - z  

Z 1 Z l  Zl 

(R) 
Ki,(rm) is a McDonald function with an imaginary index and a = h or a = h, Iia (rm) is the real part of 
a modified Bessel function of the first kind with imaginary index and h = h(m,  n) and h = h(m,  n) are 
respectively the roots of number n of the transcendental equations 

Ro(rl) = 0 and [L[r(-~)l(Rl(r))]r=r, = 0 

Using relations (3.1), (3.2) and (2.6), for the CCP we will have 

1) = Z ((I)3mnCOSO~-- ¢I)2mnSinO~)~Xt2mn 
t/, ttl 

hw = 

h lA -- 

2 I f~mnL[[50: - 1) l (~°2mn)  

n, m 

1¢ ~ L[p(-,c)](W )~ 2 2 lrnn lmn ~ +hWO 
p1+1¢ 

+ ---f--'--~dDlmnL ( lmn) + huo 
n,m P l  + I (  

(3.6) 

~:- 1 / :  -"/c°so~d~mn sin~b3m n sino~dcI)zmn -- COS{3~(i)2mn'~) 

P2 + (~: - 

In relations (3.6), expressions for hw and hu are obtained by integrating the last two equations of (2.6), 
and hwo and huo are the general solution of the corresponding homogeneous equations, which has the 
form 

hw o = gt31( p, [3)cos~zt~ + ~32(P, 13)sin~tx, hu o = ~ll(P, 13)cos~:c~ + ~12(P, 13) sinntx (3.7) 
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If expression (3.6), taking formulae (3.7) into account, is substituted into the left-hand sides of equalities 
(2.5) (we recall that T = 0) and, taking formulae (3.2) account, equalities (3.1) are substituted into the 
right-hand sides of equalities (2.5), we obtain the following system of equations for the functions 
v&~ P) and VI& P> (3 = L2) 

LlPKl(4r3s)-L[PKl(~l~) = 0, LIP(l-K)l(yf,s) + L'p('-K)'(w3s) = 0 (3.8) 
For the class of boundary-value problems being considered 

w3s = 0, yils = 0 (3.9) 

apart from in the two following cases: 
(1) when p = p. and p = pl, conditions (2.7)~ are specified, and when p = PO and p = p1 conditions 

(2.8)b are specified. The LamC coefficient H can be represented in the form H = H1(p)H2(p). In this 
case 

VII = A$-“H;, y12 = B,H;-KH;, yf3, = ty3* = 0 

and thereby 

hu = [A,cos(Ka)+ B,sin(ux)]H:-KH;, I.J = 0, w = 0 (3.10) 

where A1 and B1 are constants; 
(2) when p = p. and p = pl, conditions (2.7)b are specified, and when p = PO and /3 = PI conditions 

(2.8)b are specified and H = Hl(p)H2(p). In this case, 

w ,, = 0, ye,* = 0, v31 = A,H;H;-“, y32 = B,H;H;-K 

and by the same token 

u = 0, IJ = 0, hw = [A,cos(Ka)+ B3sin(mt)]H:Hi-K (3.11) 

where A3 and B3 are constants. 
For all the remaining cases, the solution of the system 

(H-KQp - (H-K~,,)p = 0, (HK-*vJp + WK-1W3s)~ = o (3.12) 

obtained from system (3.8) with boundary conditions which are determined by the values of hw and 
hu on the edges a = 0 and a = al, will be v33s = 0, vls = 0. 

In fact, by taking 

tyjs = -H- K+ 1(HK-1’21#,)p, w,s = H-K+ ‘(,‘- 1’2y,)p (3.13) 

we arrive at the following boundary-value problem 

Y,, t Ypp - (I? - 1/4)h2H-2Y = 0 (3.14) 

when p = pj: (H”- 1’2’P)p = 0 or (HK- 1’2’P)p = 0 
when P = /3j: (H”- 1’2Y)p = 0 or (H”- 1’2Y)P = 0. 

This problem always has only the solution Y = ca 1’2-K but substitution of this value of Y into relations 
(3.13) gives v3$ = 0, vl, = 0 or, what is the same thing, hw = 0, hu = 0. The constant co can therefore 
always be assumed to be zero. 

We now represent conditions (2.9) in the form 
when a = cx+ 

a) 2, = fjl(P9 PI, L”(l -““[(hU),] + L”(l -‘)‘[(hW),] = h2Fj2(p, p) 

~5[~"'[(hw),] -L'pK1[(hU),] = h21;i3(p, p)  or 
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b) v~ = /~jl(P, 13), L[O(1-~)l(hu) + L[f~(1-~)l(hw) 2- = h fj2(P, 13) 

_ = h  2 " ~  . , LI°Kl(hw) Lffl~l(hu) Jj3(P 13) or 
(3.15) 

= = h 2- c) I) f j l (P,  13), L[P(~-~)](hu) + L[t3(l-~)l(hw) fj2(P, 13) 

LfP~l(hw) L [~] (hu)  2 ~ - = h fj3(P, ]~) 

The functions/~ themselves and the functions )~z (l = 1, 2, 3) together with their first derivatives are 
expanded in uniformly converging series in the eigenfunctions of problems (3.3)-(3.5) (the functions 
with a tilde are obtained as a result of corresponding operations on the functions Fj2 , F#, fj2 and fiB)- 
In addition, certain additional requirements are imposed on the functions fjl from conditions (2.9). 
For example, if boundary condition (2.6), (2.7)a, (2.8)a, (3.15)b is considered, then, apart from the fact 
that 

= = rL[9(1-~)] . . . .  = 0 f j2(fPj, 13) O, [ L[13CI-~)I(fj2)]I3 = 13~ O, f j3(P, 13j) = O, t tJj3)lp = os 

the requirements that )~2(P, ]3;) = 0 and fj3(Pj, 13) = 0 are additionally imposed on the functions J)2 
and fj-3. 

Proof of the equivalence of the boundary conditions (3.5) and (2.9) reduces to proof of the fact that 
system (3.12), with the corresponding boundary conditions, only has a trivial solution (with the exception 
of cases 1 and 2, which have been pointed out above) and the latter problem, in turn, reduces to an 
investigation of boundary-value problem (3.14). Finally, it can be stated that, if H = Hl(p)H2(13), the 
solution (3.10) has to be added to problem (2.6), (2.7)a, (2.8)b, (3.15), and the solution (3.11) to the 
problem (2.6), (2.7)b, (2.8)a, (3.15). In all of the remaining cases, conditions (3.15) and (2.9) are 
equivalent. 

The aim of this paper is to construct a regular solution of boundary-value problems (2.6)-(2.8), (3.15) 
and we shall therefore define the concept of regularity. 

We shall say that a solution of system (2.6), which is determined by the functions u, v and w, is regular 
if the functions u, a) and w are triply continuously differentiable in the domain f2, where f2 is the domain 
g) together with the boundaries p = pj and 13 = 13j, and, in the surface a = c~j, they can be represented, 
together with their first and second derivatives, by absolutely and uniformly converging Fourier series 
in the eigenfunctions of problem (3.3)-(3.5). In addition, we assume that the equilibrium equations 
hold when 9 = Pj and 13 = 13j. 

The advisability of replacing conditions (2.9) by conditions (3.15) is confirmed by the formulae 

1) = ~3cos~-q)2sin(~, 1) a = [(q03)a-q02]COS0~-[q03+(q02)c~lsin0~ 

h-2[L [O0- ~)](hu) + L [[3(1 -~)J(hw)] = [((P2)ot + ( K  -- l ) (P3]  sinot + 

+ [(1¢ - 1)q02 - ( ( p 3 ) ~ ]  COS 0~ 

h-2{L [p(1 -~)][(hu)a] + L [1~0 -~c)][(hw)a] } = [(q02)aa + (K-  1)q) 2 + K(q03)a] sinR + 
(3.16) 

+ [K((P2)c~ - (~3)ac~ + (K-  1)(P3lcos~ 

h-Z[ LEO~l(hw)_ L[f~Kl(hu) ] = K~pl, h-2{ L[°Kl[(hw)a] _ L[~l[(hu)c~]} = K(~pl)e ~ 

in the right-hand sides of which the variables 9 and ]3 do not appear in explicit form and there are no 
derivatives of these variables. 

We note that, as previously [7], the overall elastic field, corresponding to the boundary-value problems 
being considered can be represented in the form of the sum of an elastic field with D = 0 and ~ = 0 
or, what is the same thing, with q% = 0 and % = 0 and an elastic field with K = 0, that is, with q01 = 0. 
The boundary conditions for the function K = q)l when c~ = 0 and c~ = al are determined by the three 
equalities in (3.15). 
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4. ANALYTICAL SOLUTION OF SOME BOUNDARY-VALUE PROBLEMS 

By replacing conditions (2.9) by conditions (3.15) and using the representations (3.6) we can find a regular 
solution of any of the boundary-value problems (2.6)-(2.8), (3.15). We shall demonstrate this, taking 
the example of the regular solution of boundary-value problem (2.6), (2.7)a, (2.8)a, (2.9)a (we call this 
Problem Go), by introducing the following boundary conditions 

a) 2v = f l l - f 0 1 ,  2A(~) = FI2-F02, 2A(P) = Fl3-F03 when ~ = cq 

b) 20 = - ( f t l - f 0 1 ) ,  2A([~) = -(F12-F02), 2A(°) = -(FI3-F03) when ~ = 0  
(4.1) 

2 1 ) = f l l + f O l ,  2A( f3 )=F12+F02 ,  2 A ( P ) = F 1 3 + F 0 3  when a) t~=tx  1, b ) ~ = O  (4.2) 

We will represent Problem Go in the form of the sum of boundary-value problems (2.6), (2.7)a, (2.8)a, 
(4.1) (Problem G1), and (2.6), (2.7)a, (2.8)a, (4.2) (Problem G2). If the boundary conditions (2.9) and 
(3.15) with zero right-hand sides are denoted by (2.9) 0 and (3.15) °, then the solutions of Problems G1 
and G2 reduce respectively to the solution of problems (2.6), (2.7)a, (2.8)a, (2.9)°a when o~ = al, (4.1)b, 
and (2.6), (2.7)a, (2.8)a, (2.9)°b when a = al, (4.2)b in which, a j 2  is chosen instead of at. The method 
for solving these two problems is the same, and we shall therefore confine ourselves to solving the first 
of them, which is equivalent to problem (2.6), (2.7)a, (2.8)a, (3.15)°a when a = 0, (3.15)a, by representing 
the functions %, (P2 and % as follows: 

Here 

(Pl ---- £f~3lmn(O~)Vtllmn(P' [~)' l = 1, 2, 3 (4.3) 
n , m  

• ch~ot A chpa ~3mn(~) = A shp___..._~ 
dPlrnn(O~ ) = almnch--~l, (I)2mn(~) = 2mnchp~ 1, 3mnchpO~l 

P2(m,n) = p3(m,n) = p(rn, n) = p, pl(m,n)  = p(m,n)  = D 

tr~2rnn(P, ~) = ~t13rnn(P, ~) = ~rnn(P, ~) are the eigenfunctions of problem (3.3), (3.4)a, (3.5)a, and 
tlJlmn(P, ~) are are the eigenfunctions of problem (3.3), (3.4)b, (3.5)b. 

Taking relations (4.43) and (3.16) into account, the constantsAlm~ are determined from the following 
system of equations 

KthDO~lAlmn = F'13mn 

[(p2_ ~:+ 1)tgoh + thpO~l]A2mn_ [(p2_ K + 1)thpCtl _ tgtXl]A3mn = ~T12mn/COSO~ 1 (4.4) 

tgO~lA2m n - thpO~lA3m n = - - f  llmn/COSO~l 

wherefnmn and #12mn are the Fourier coefficients of_the functionsfn(p, [3) and/~12(P, •), which have 
been expanded in series in the functions ~mn, and F13mn are the Fourier coefficients of the function 
/~13(P, ~), which has been expanded in the functions ~lm~. 

Here, a regular solution of the boundary-value problem in question has been obtained. Any of 
problems (2.6), (2.7)a, (2.8)a, (3.15) can be solved for a CCP in exactly the same way. In this case, the 
convergence of the series representing the solution can be proved. More specifically, it is possible to 
construct a uniformly converging binary number series with positive terms which, in the domain fi, 
will dominate the functional series representing the components of the displacement vector and 
their first and second derivatives. The construction of such a numerical series and the proof of the 
uniqueness of the solution of problems (2.6), (2.7)a, (2.8)a, (3.15) is carried out in the same way as 
previously [7]. As far as the boundary conditions are concerned, when (9 = Pj, ~ = ~j) on just one of 
the lateral surfaces of the CCP, for example, when p = P0 and conditions (2.7)b are specified when 
P = P0, everything can be proved in the same way as in the case of problems (2.6), (2.7)a, (2.8)a, 
(3.15) if the system of functions which is generated by problem (3.3), (3.4)b when p = P0, (3.4)a when 
P = Pl, (3.5)a is complete. Without touching on the question of investigating the completeness of this 
system of functions, we merely note that the system of functions generated by the boundary-value 
problem (3.3), (3.4)a, (3.5)a is complete [5]. 
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It turns out that for any boundary-value problem from the class of boundary-value problems 
(2.6)-(2.8), (3.15) to be solved, it is always possible to reduce it to a sum of two such boundary-value 
problems in each of which the constants appearing in the expression for qbtm n (l = 1, 2, 3) are the same 
as in relations (4.4) and should be determined from a linear equation and a system of two linear algebraic 
equations with two unknowns (the above-mentioned "reduction" is more complex for boundary-value 
problems in which displacements are specified in one of the planes, and arbitrary conditions from the 
remaining two are specified in the other plane). 

We will now illustrate what has been said taking the example of problem (2.6)-(2.8), (2.9)b when 
= 0 and (2.9)c when cz = ~1 (we call this Problem R0). It can be represented in the form of the sum 

of two problems: Problem R1 which differs from Problem R0 only in that the boundary conditions when 
o~ = c~1 have the form 

u = 0, A (a) = 0, w = 0 (4.5) 

and Problem R 2 which differs from Problem R0 in the boundary conditions both when cz = 0 and when 
cz = al- In particular, when o~ = 0, conditions (4.5) are satisfied, and, when cz = CZl, the functions u and 
w are the same as in Problem R0, and the function fl, which is the value of v(9, cza, 13), taken from the 
solution of Problem R1, is subtracted from the expression for v. 

It can be seen that the reduction of an arbitrary boundary-value problem to the sum of two simpler 
problems leads to the fact that, in each of the two problems, either the symmetry conditions 

v = O, A ([~) = O, A (p) = 0 

or the antisymmetry conditions (4.5) are satisfied in one of the boundary planes ~ = c~j. Note that the 
symmetry and antisymmetry conditions are conditions for the continuation of the solution across the 
c~ = 0 or o~ = off plane. 

In conclusion, we point out that, although the coordinate surfaces of one system of coordinates or 
another enable us to treat the elastic equilibrium of bodies of different shape, the form of the solution 
remains unchanged. The shape of an elastic body is solely determined by the form of the parameters 
h and H. 
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